Machine Controller MP2000 SeriesMANUAL NO. SIE-C887-1.2DUSER'S MANUALLADDER PROGRAMMING1234567Introduction to Ladder ProgrammingSpecifications
xContentsAbout this Manual- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iiiUsing
5.3 Numeric Operation Instructions5.3.5 Extended Subtract (SUBX (− −))5-31Instructions5( 3 ) Programming ExamplesIn the following programming exampl
5.3 Numeric Operation Instructions5.3.6 Multiply (MUL (x))5-325.3.6 Multiply (MUL (x))( 1 ) OperationInput data A and input data B are multiplied a
5.3 Numeric Operation Instructions5.3.6 Multiply (MUL (x))5-33Instructions5• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 200
5.3 Numeric Operation Instructions5.3.7 Divide (DIV (÷))5-345.3.7 Divide (DIV (÷))( 1 ) OperationInput data A is divided by input data B and the re
5.3 Numeric Operation Instructions5.3.7 Divide (DIV (÷))5-35Instructions5( 3 ) Programming ExamplesIn the following programming examples, input data
5.3 Numeric Operation Instructions5.3.8 Integer Remainder (MOD)5-365.3.8 Integer Remainder (MOD)( 1 ) OperationThe remainder of the immediately pre
5.3 Numeric Operation Instructions5.3.8 Integer Remainder (MOD)5-37Instructions5( 3 ) Programming ExamplesIn the following programming examples, inp
5.3 Numeric Operation Instructions5.3.9 Real Remainder (REM)5-385.3.9 Real Remainder (REM)( 1 ) OperationThe remainder from a real number division
5.3 Numeric Operation Instructions5.3.9 Real Remainder (REM)5-39Instructions5( 3 ) Programming ExamplesIn the following programming examples, the ba
5.3 Numeric Operation Instructions5.3.10 Increment (INC)5-405.3.10 Increment (INC)( 1 ) OperationA value of 1 is added to the integer or double-len
xi4.4 Registers (Variables)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-134.4.1 What Are Registers? - - -
5.3 Numeric Operation Instructions5.3.10 Increment (INC)5-41Instructions5( 3 ) Programming ExamplesThe following programming examples achieve the sa
5.3 Numeric Operation Instructions5.3.11 Decrement (DEC)5-425.3.11 Decrement (DEC)( 1 ) OperationA value of 1 is subtracted from the integer or dou
5.3 Numeric Operation Instructions5.3.11 Decrement (DEC)5-43Instructions5( 3 ) Programming ExamplesThe following programming examples achieve the sa
5.3 Numeric Operation Instructions5.3.12 Add Time (TMADD)5-445.3.12 Add Time (TMADD)( 1 ) OperationA duration (hours/minutes/seconds) is added to a
5.3 Numeric Operation Instructions5.3.12 Add Time (TMADD)5-45Instructions5( 3 ) Programming ExampleThe following table gives typical conditions for
5.3 Numeric Operation Instructions5.3.13 Subtract Time (TMSUB)5-465.3.13 Subtract Time (TMSUB)( 1 ) OperationA duration (hours/minutes/seconds) is
5.3 Numeric Operation Instructions5.3.13 Subtract Time (TMSUB)5-47Instructions5( 3 ) Programming ExampleThe following table gives typical conditions
5.3 Numeric Operation Instructions5.3.14 Spend Time (SPEND)5-485.3.14 Spend Time (SPEND)( 1 ) OperationThe elapsed time is calculated by subtractin
5.3 Numeric Operation Instructions5.3.14 Spend Time (SPEND)5-49Instructions5Time data B is formatted as shown below.Time data A is formatted as show
5.3 Numeric Operation Instructions5.3.14 Spend Time (SPEND)5-50The execution result of this SPEND instruction example is shown below.Time A after Ex
xii5.4 Logic Operations and Comparison Instructions - - - - - - - - - - - - - - - - - - - - - - - 5-635.4.1 Inclusive AND (AND) - - - - - - - -
5.3 Numeric Operation Instructions5.3.15 Invert Sign (INV)5-51Instructions55.3.15 Invert Sign (INV)( 1 ) OperationThe sign of the input data is inv
5.3 Numeric Operation Instructions5.3.16 One’s Complement (COM)5-525.3.16 One’s Complement (COM)( 1 ) OperationThe one’s complement of the input da
5.3 Numeric Operation Instructions5.3.17 Absolute Value (ABS)5-53Instructions55.3.17 Absolute Value (ABS)( 1 ) OperationThe absolute value of the i
5.3 Numeric Operation Instructions5.3.18 Binary Conversion (BIN)5-545.3.18 Binary Conversion (BIN)( 1 ) OperationThe value of the input data is con
5.3 Numeric Operation Instructions5.3.19 BCD Conversion (BCD)5-55Instructions55.3.19 BCD Conversion (BCD)( 1 ) OperationThe input data is converted
5.3 Numeric Operation Instructions5.3.20 Parity Conversion (PARITY)5-565.3.20 Parity Conversion (PARITY)( 1 ) OperationThe number of bits set to 1
5.3 Numeric Operation Instructions5.3.21 ASCII Conversion 1 (ASCII)5-57Instructions55.3.21 ASCII Conversion 1 (ASCII)( 1 ) OperationThe input text
5.3 Numeric Operation Instructions5.3.21 ASCII Conversion 1 (ASCII)5-58( 3 ) Programming ExampleIn the following programming example, the input stri
5.3 Numeric Operation Instructions5.3.22 ASCII Conversion 2 (BINASC)5-59Instructions55.3.22 ASCII Conversion 2 (BINASC)( 1 ) OperationThe 16-bit bi
5.3 Numeric Operation Instructions5.3.22 ASCII Conversion 2 (BINASC)5-60( 3 ) Programming ExampleIn the following programming example, 10,811 (2A3B
xiii5.8.7 First-order Lag (LAG)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-1615.8.8 Pha
5.3 Numeric Operation Instructions5.3.23 ASCII Conversion 3 (ASCBIN)5-61Instructions55.3.23 ASCII Conversion 3 (ASCBIN)( 1 ) OperationThe value giv
5.3 Numeric Operation Instructions5.3.23 ASCII Conversion 3 (ASCBIN)5-62( 3 ) Programming ExampleIn the following programming example, the ASCBIN in
5.4 Logic Operations and Comparison Instructions5.4.1 Inclusive AND (AND)5-63Instructions55.4 Logic Operations and Comparison Instructions5.4.1 In
5.4 Logic Operations and Comparison Instructions5.4.1 Inclusive AND (AND)5-64( 3 ) Programming ExampleIn the following programming example, a logica
5.4 Logic Operations and Comparison Instructions5.4.2 Inclusive OR (OR)5-65Instructions55.4.2 Inclusive OR (OR)( 1 ) OperationThe OR instruction pe
5.4 Logic Operations and Comparison Instructions5.4.2 Inclusive OR (OR)5-66( 3 ) Programming ExampleIn the following programming example, a logical
5.4 Logic Operations and Comparison Instructions5.4.3 Exclusive OR (XOR)5-67Instructions55.4.3 Exclusive OR (XOR)( 1 ) OperationThe XOR instruction
5.4 Logic Operations and Comparison Instructions5.4.3 Exclusive OR (XOR)5-68( 3 ) Programming ExampleIn the following programming example, an exclus
5.4 Logic Operations and Comparison Instructions5.4.4 Less Than (<)5-69Instructions55.4.4 Less Than (<)( 1 ) OperationInput data A and input
5.4 Logic Operations and Comparison Instructions5.4.5 Less Than or Equal (≤)5-705.4.5 Less Than or Equal (≤)( 1 ) OperationInput data A and input d
xiv7.2 Indicator Status - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-37.3 Problem Classificati
5.4 Logic Operations and Comparison Instructions5.4.6 Equal (=)5-71Instructions55.4.6 Equal (=)( 1 ) OperationInput data A and input data B are com
5.4 Logic Operations and Comparison Instructions5.4.7 Not Equal (≠)5-725.4.7 Not Equal (≠)( 1 ) OperationInput data A and input data B are compared
5.4 Logic Operations and Comparison Instructions5.4.8 Greater Than or Equal (≥)5-73Instructions55.4.8 Greater Than or Equal (≥)( 1 ) OperationInput
5.4 Logic Operations and Comparison Instructions5.4.9 Greater Than (>)5-745.4.9 Greater Than (>)( 1 ) OperationInput data A and input data B
5.4 Logic Operations and Comparison Instructions5.4.10 Range Check (RCHK)5-75Instructions55.4.10 Range Check (RCHK)( 1 ) OperationThe RCHK instruct
5.4 Logic Operations and Comparison Instructions5.4.10 Range Check (RCHK)5-76( 3 ) Programming ExamplesThe following programming examples execute th
5.5 Program Control Instructions5.5.1 Call Sequence Program (SEE)5-77Instructions55.5 Program Control Instructions5.5.1 Call Sequence Program (SEE
5.5 Program Control Instructions5.5.2 Call Motion Program (MSEE)5-785.5.2 Call Motion Program (MSEE)( 1 ) OperationThe MSEE instruction calls the s
5.5 Program Control Instructions5.5.2 Call Motion Program (MSEE)5-79Instructions5( 3 ) Programming ExamplesThe following programming examples show h
5.5 Program Control Instructions5.5.3 Call User Function (FUNC)5-805.5.3 Call User Function (FUNC)( 1 ) OperationThe FUNC instruction calls a user
xvD.2 National Limitations - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-5D.2.1 Arithmetic Operators -
5.5 Program Control Instructions5.5.4 Direct Input String (INS)5-81Instructions55.5.4 Direct Input String (INS)( 1 ) OperationThe INS instruction i
5.5 Program Control Instructions5.5.4 Direct Input String (INS)5-82 Parameter Table ConfigurationThe following table gives details about the parame
5.5 Program Control Instructions5.5.4 Direct Input String (INS)5-83Instructions5( 3 ) Programming ExampleWhen one word is input from the LIO at subs
5.5 Program Control Instructions5.5.5 Direct Output String (OUTS)5-845.5.5 Direct Output String (OUTS)( 1 ) OperationThe OUTS instruction is execut
5.5 Program Control Instructions5.5.5 Direct Output String (OUTS)5-85Instructions5 Parameter Table ConfigurationThe following table gives details a
5.5 Program Control Instructions5.5.5 Direct Output String (OUTS)5-86( 3 ) Programming ExampleWhen one word is output to the LIO at subslot number 1
5.5 Program Control Instructions5.5.6 Call Extended Program (XCALL)5-87Instructions55.5.6 Call Extended Program (XCALL)( 1 ) OperationAn extended p
5.5 Program Control Instructions5.5.7 WHILE Construct (WHILE, END_WHILE)5-885.5.7 WHILE Construct (WHILE, END_WHILE)( 1 ) OperationThe programming
5.5 Program Control Instructions5.5.7 WHILE Construct (WHILE, END_WHILE)5-89Instructions5( 3 ) Programming ExampleIn the following programming examp
5.5 Program Control Instructions5.5.7 WHILE Construct (WHILE, END_WHILE)5-90( 4 ) Additional Information[ a ] Applicable Conditional ExpressionsThe
1-1Introduction to Ladder Programming11Introduction to Ladder ProgrammingThis chapter gives an overview of ladder programming and describes its featur
5.5 Program Control Instructions5.5.8 FOR Construct (FOR, END_FOR)5-91Instructions55.5.8 FOR Construct (FOR, END_FOR)( 1 ) OperationThe programming
5.5 Program Control Instructions5.5.8 FOR Construct (FOR, END_FOR)5-92( 3 ) Programming ExampleIn the following programming example, the registers f
5.5 Program Control Instructions5.5.9 IF Construct (IF, END_IF)5-93Instructions55.5.9 IF Construct (IF, END_IF)( 1 ) OperationExecution of the prog
5.5 Program Control Instructions5.5.9 IF Construct (IF, END_IF)5-94( 3 ) Programming ExampleWhen the conditional expression (MB000001) for the IF in
5.5 Program Control Instructions5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)5-95Instructions55.5.10 IF-ELSE Construct (IF, ELSE, END_IF)( 1 ) Operat
5.5 Program Control Instructions5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)5-96( 3 ) Programming ExampleWhen the conditional expression (MB000001) f
5.5 Program Control Instructions5.5.11 Expression (EXPRESSION)5-97Instructions55.5.11 Expression (EXPRESSION)( 1 ) OperationYou can use the followi
5.5 Program Control Instructions5.5.11 Expression (EXPRESSION)5-98( 3 ) Programming ExampleIn the following programming example, multiple operations
5.6 Basic Function Instructions5.6.1 Square Root (SQRT)5-99Instructions55.6 Basic Function Instructions5.6.1 Square Root (SQRT) ( 1 ) OperationThe
5.6 Basic Function Instructions5.6.1 Square Root (SQRT)5-100( 3 ) Programming ExamplesThe following programming examples demonstrate the SQRT instru
1.1 What Is a Ladder Program? 1-21.1 What Is a Ladder Program?A ladder program uses ladder instructions and registers to symbolically represent ele
5.6 Basic Function Instructions5.6.2 Sine (SIN)5-101Instructions55.6.2 Sine (SIN)( 1 ) OperationThe SIN instruction calculates the sine of the inte
5.6 Basic Function Instructions5.6.2 Sine (SIN)5-102( 3 ) Programming ExamplesThe following programming examples demonstrate the SIN instruction usi
5.6 Basic Function Instructions5.6.3 Cosine (COS)5-103Instructions55.6.3 Cosine (COS)( 1 ) OperationThe COS instruction calculates the cosine of th
5.6 Basic Function Instructions5.6.3 Cosine (COS)5-104( 3 ) Programming ExamplesThe following programming examples demonstrate the COS instruction u
5.6 Basic Function Instructions5.6.4 Tangent (TAN)5-105Instructions55.6.4 Tangent (TAN)( 1 ) OperationThe TAN instruction calculates the tangent of
5.6 Basic Function Instructions5.6.5 Arc Sine (ASIN)5-1065.6.5 Arc Sine (ASIN)( 1 ) OperationThe ASIN instruction calculates the arc sine of the re
5.6 Basic Function Instructions5.6.6 Arc Cosine (ACOS)5-107Instructions55.6.6 Arc Cosine (ACOS)( 1 ) OperationThe ACOS instruction calculates the a
5.6 Basic Function Instructions5.6.7 Arc Tangent (ATAN)5-1085.6.7 Arc Tangent (ATAN)( 1 ) OperationThe ATAN instruction calculates the arc tangent
5.6 Basic Function Instructions5.6.8 Exponential (EXP)5-109Instructions55.6.8 Exponential (EXP)( 1 ) OperationThe EXP instruction calculates the va
5.6 Basic Function Instructions5.6.9 Natural Logarithm (LN)5-1105.6.9 Natural Logarithm (LN)( 1 ) OperationThe LN instruction calculates the natura
1.2 Features of Ladder Programming for MP2000-series Machine Controllers1.2.1 Types of Ladder Drawings and Their Different Execution Timing1-3Introd
5.6 Basic Function Instructions5.6.10 Common Logarithm (LOG)5-111Instructions55.6.10 Common Logarithm (LOG)( 1 ) OperationThe LOG instruction calcu
5.7 Data Shift Instructions5.7.1 Bit Rotate Left (ROTL)5-1125.7 Data Shift Instructions5.7.1 Bit Rotate Left (ROTL)( 1 ) OperationThe ROTL instruc
5.7 Data Shift Instructions5.7.1 Bit Rotate Left (ROTL)5-113Instructions5( 3 ) Programming ExampleIn the following programming example, the data spe
5.7 Data Shift Instructions5.7.2 Bit Rotate Right (ROTR)5-1145.7.2 Bit Rotate Right (ROTR)( 1 ) OperationThe ROTR instruction rotates the data spec
5.7 Data Shift Instructions5.7.2 Bit Rotate Right (ROTR)5-115Instructions5( 3 ) Programming ExampleIn the following programming example, the data sp
5.7 Data Shift Instructions5.7.3 Move Bit (MOVB)5-1165.7.3 Move Bit (MOVB)( 1 ) OperationThe MOVB instruction moves the designated number of bits o
5.7 Data Shift Instructions5.7.3 Move Bit (MOVB)5-117Instructions5( 2 ) Format∗ C and # registers cannot be used.( 3 ) Programming ExampleIn the fol
5.7 Data Shift Instructions5.7.4 Move Word (MOVW)5-1185.7.4 Move Word (MOVW)( 1 ) OperationThe MOVW instruction moves the specified number of words
5.7 Data Shift Instructions5.7.4 Move Word (MOVW)5-119Instructions5( 2 ) Format∗ C and # registers cannot be used.( 3 ) Programming ExampleIn the fo
5.7 Data Shift Instructions5.7.5 Exchange (XCHG)5-1205.7.5 Exchange (XCHG)( 1 ) OperationThe XCHG instruction exchanges the designated number of wo
1.2 Features of Ladder Programming for MP2000-series Machine Controllers1.2.2 Program Modules1-41.2.2 Program ModulesThe main program can be separa
5.7 Data Shift Instructions5.7.5 Exchange (XCHG)5-121Instructions5( 3 ) Programming ExampleIn the following programming example, four words of data
5.7 Data Shift Instructions5.7.6 Table Initialization (SETW)5-1225.7.6 Table Initialization (SETW)( 1 ) OperationThe SETW instruction stores the da
5.7 Data Shift Instructions5.7.6 Table Initialization (SETW)5-123Instructions5( 3 ) Programming ExampleIn the following programming example, the are
5.7 Data Shift Instructions5.7.7 Byte-to-word Expansion (BEXTD)5-1245.7.7 Byte-to-word Expansion (BEXTD)( 1 ) OperationThe BEXTD instruction expand
5.7 Data Shift Instructions5.7.7 Byte-to-word Expansion (BEXTD)5-125Instructions5( 3 ) Programming ExampleIn the following programming example, four
5.7 Data Shift Instructions5.7.8 Word-to-byte Compression (BPRESS)5-1265.7.8 Word-to-byte Compression (BPRESS)( 1 ) OperationThe BPRESS instruction
5.7 Data Shift Instructions5.7.8 Word-to-byte Compression (BPRESS)5-127Instructions5( 3 ) Programming ExampleIn the following programming example, t
5.7 Data Shift Instructions5.7.9 Binary Search (BSRCH)5-1285.7.9 Binary Search (BSRCH)( 1 ) OperationThe BSRCH instruction searches for the search
5.7 Data Shift Instructions5.7.9 Binary Search (BSRCH)5-129Instructions5( 3 ) Programming ExampleIn the following programming example, the data from
5.7 Data Shift Instructions5.7.10 Sort (SORT)5-1305.7.10 Sort (SORT)( 1 ) OperationThe SORT instruction sorts the data in the range of registers fr
Copyright © 1998 YASKAWA ELECTRIC CORPORATIONAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or tra
1.2 Features of Ladder Programming for MP2000-series Machine Controllers1.2.4 Communications Control with External Devices1-5Introduction to Ladder
5.7 Data Shift Instructions5.7.10 Sort (SORT)5-131Instructions5( 3 ) Programming ExampleIn the following programming example, the data from ML00000
5.7 Data Shift Instructions5.7.11 Bit Shift Left (SHFTL)5-1325.7.11 Bit Shift Left (SHFTL)( 1 ) OperationThe SHFTL instruction shifts the bits spec
5.7 Data Shift Instructions5.7.11 Bit Shift Left (SHFTL)5-133Instructions5( 3 ) Programming ExampleIn the following programming example, four bits f
5.7 Data Shift Instructions5.7.12 Bit Shift Right (SHFTR)5-1345.7.12 Bit Shift Right (SHFTR)( 1 ) OperationThe SHFTR instruction shifts the bits sp
5.7 Data Shift Instructions5.7.12 Bit Shift Right (SHFTR)5-135Instructions5( 3 ) Programming ExampleIn the following programming example, four bits
5.7 Data Shift Instructions5.7.13 Copy Word (COPYW)5-1365.7.13 Copy Word (COPYW)( 1 ) OperationThe COPY instruction copies the specified number of
5.7 Data Shift Instructions5.7.13 Copy Word (COPYW)5-137Instructions5( 2 ) Format∗ C and # registers cannot be used.( 3 ) Programming ExampleIn the
5.7 Data Shift Instructions5.7.14 Byte Swap (BSWAP)5-1385.7.14 Byte Swap (BSWAP)( 1 ) OperationThe BSWAP instruction swaps the upper byte and lower
5.8 DDC Instructions5.8.1 Dead Zone A (DZA)5-139Instructions55.8 DDC Instructions5.8.1 Dead Zone A (DZA)( 1 ) OperationThe DZA instruction calcula
5.8 DDC Instructions5.8.1 Dead Zone A (DZA)5-140( 3 ) Programming ExamplesIn the following programming examples, the dead zone set value is set to 1
2-1Specifications for Ladder Programs22Specifications for Ladder ProgramsThis chapter gives the specifications for ladder programs.2.1 MP2000-series M
5.8 DDC Instructions5.8.2 Dead Zone B (DZB)5-141Instructions55.8.2 Dead Zone B (DZB)( 1 ) OperationThe DZB instruction calculates the output value
5.8 DDC Instructions5.8.2 Dead Zone B (DZB)5-142( 3 ) Programming ExamplesIn the following programming examples, the dead zone set value is set to 1
5.8 DDC Instructions5.8.3 Upper/Lower Limit (LIMIT)5-143Instructions55.8.3 Upper/Lower Limit (LIMIT)( 1 ) OperationThe LIMIT instruction controls t
5.8 DDC Instructions5.8.3 Upper/Lower Limit (LIMIT)5-144( 3 ) Programming ExamplesIn the following programming examples, the operation results are s
5.8 DDC Instructions5.8.4 PI Control (PI)5-145Instructions55.8.4 PI Control (PI)( 1 ) OperationWhen deviation X is input, the PI instruction perfor
5.8 DDC Instructions5.8.4 PI Control (PI)5-146( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for PI Instruction
5.8 DDC Instructions5.8.4 PI Control (PI)5-147Instructions5[ b ] Parameter Table Configuration for PI Instruction with Real Numbers∗ The relay input
5.8 DDC Instructions5.8.4 PI Control (PI)5-148( 3 ) Programming ExampleThis programming example calculates the reference value in MF00100 weighted w
5.8 DDC Instructions5.8.4 PI Control (PI)5-149Instructions5The programming example is shown below. The OL00000 (reference value) and IL00002 (feedb
5.8 DDC Instructions5.8.5 PD Control (PD)5-1505.8.5 PD Control (PD)( 1 ) OperationWhen deviation X is input, the PD instruction performs P and D op
2.1 MP2000-series Machine Controller Specifications2.1.1 Applicable Machine Controllers2-22.1 MP2000-series Machine Controller Specifications2.1.1
5.8 DDC Instructions5.8.5 PD Control (PD)5-151Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for PD
5.8 DDC Instructions5.8.5 PD Control (PD)5-152[ b ] Parameter Table Configuration for PD Instruction with Real Numbers∗ The relay input and output b
5.8 DDC Instructions5.8.5 PD Control (PD)5-153Instructions5( 3 ) Programming ExampleThis programming example calculates the reference value in MF001
5.8 DDC Instructions5.8.5 PD Control (PD)5-154The programming example is shown below. The OL00000 (reference value) and IL00002 (feedback value) re
5.8 DDC Instructions5.8.5 PD Control (PD)5-155Instructions5( 4 ) Additional Information[ a ] Transfer FunctionsThe transfer function of the P and D
5.8 DDC Instructions5.8.6 PID Control (PID)5-1565.8.6 PID Control (PID)( 1 ) OperationWhen deviation X is input, the PID instruction performs P, I,
5.8 DDC Instructions5.8.6 PID Control (PID)5-157Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for
5.8 DDC Instructions5.8.6 PID Control (PID)5-158[ b ] Parameter Table Configuration for PID Instruction with Real Numbers∗ The relay input and outpu
5.8 DDC Instructions5.8.6 PID Control (PID)5-159Instructions5( 3 ) Programming ExampleThis programming example calculates the reference value in MF0
5.8 DDC Instructions5.8.6 PID Control (PID)5-160The programming example is shown below. The OL00000 (reference value) and IL00002 (feedback value)
2.1 MP2000-series Machine Controller Specifications2.1.2 Machine Controller Program Specifications2-3Specifications for Ladder Programs22.1.2 Machi
5.8 DDC Instructions5.8.7 First-order Lag (LAG)5-161Instructions55.8.7 First-order Lag (LAG)( 1 ) OperationThe LAG instruction calculates the first
5.8 DDC Instructions5.8.7 First-order Lag (LAG)5-162( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for LAG Instr
5.8 DDC Instructions5.8.7 First-order Lag (LAG)5-163Instructions5( 3 ) Programming ExampleIn the following programming example, the LAG instruction
5.8 DDC Instructions5.8.8 Phase Lead Lag (LLAG)5-1645.8.8 Phase Lead Lag (LLAG)( 1 ) OperationThe LLAG instruction calculates the phase lead and la
5.8 DDC Instructions5.8.8 Phase Lead Lag (LLAG)5-165Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration
5.8 DDC Instructions5.8.8 Phase Lead Lag (LLAG)5-166( 3 ) Programming ExampleIn the following programming example, the LLAG instruction is executed
5.8 DDC Instructions5.8.9 Function Generator (FGN)5-167Instructions55.8.9 Function Generator (FGN)( 1 ) OperationThe FGN instruction generates a fu
5.8 DDC Instructions5.8.9 Function Generator (FGN)5-168( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for FGN In
5.8 DDC Instructions5.8.9 Function Generator (FGN)5-169Instructions5[ b ] Parameter Table Configuration for FGN Instruction with Double-length Integ
5.8 DDC Instructions5.8.9 Function Generator (FGN)5-170( 3 ) Programming ExampleIn the following programming example, the function is generated usin
2.2 Engineering Tool Specifications2.2.1 Applicable Engineering Tool2-42.2 Engineering Tool SpecificationsThis section gives the specifications for
5.8 DDC Instructions5.8.9 Function Generator (FGN)5-171Instructions5( 4 ) Additional InformationThe FGN instruction searches for the pair Xn and Yn
5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-1725.8.10 Inverse Function Generator (IFGN)( 1 ) OperationThe IFGN instruction genera
5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-173Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table C
5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-174[ b ] Parameter Table Configuration for IFGN Instruction with Double-length Integer
5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-175Instructions5( 3 ) Programming ExampleIn the following programming example, the fun
5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-176( 4 ) Additional InformationThe IFGN instruction searches for the pair Xn and Yn wh
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-177Instructions55.8.11 Linear Accelerator/Decelerator 1 (LAU)( 1 ) OperationThe
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-178( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configura
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-179Instructions5[ b ] Parameter Table Configuration for LAU Instruction with Real
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-180( 3 ) Programming ExampleIn the following programming example, the LAU instruc
2.3 Ladder Programming Instructions2-5Specifications for Ladder Programs22.3 Ladder Programming InstructionsThe following table lists the ladder pro
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-181Instructions5( 4 ) Additional InformationThis information applies when the LAU
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-182[ b ] LAU Instruction for Real NumbersThe LAU instruction for real numbers cal
5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-183Instructions5[ c ] Precaution When Input Speed Changes Across a Speed of 0If a
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-1845.8.12 Linear Accelerator/Decelerator 2 (SLAU)( 1 ) OperationThe SLAU instru
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-185Instructions5( 2 ) Format∗ 1. This data type can be used only for version 2.3
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-186 If QS (quick stop) is opened, QT (quick stop time) is used as the accelerat
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-187Instructions5[ c ] Parameter Table Configuration for SLAU Instruction with Re
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-188When QS (quick stop) opens (OFF), the output decelerates at the quick stop ti
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-189Instructions5The following figure shows how each register operates.∗ If the q
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-190 Speed Output Value during a Quick StopThe speed output value during a quick
2.3 Ladder Programming Instructions2-6Program Control InstructionsSEE Call Sequence Subprogram5.5.1MSEE Call Motion Program5.5.2FUNC Call User Functi
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-191Instructions5ARY (accelerating) turns ON at the following times:•When V’ ≥ 0
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-192 Speed Output Value during S-Curve AccelerationThe speed output value during
5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-193Instructions5[ c ] Precautions in Using the SLAU Instruction for IntegersDo n
5.8 DDC Instructions5.8.13 Pulse Width Modulation (PWM)5-1945.8.13 Pulse Width Modulation (PWM)( 1 ) OperationThe PWM instruction converts the inpu
5.8 DDC Instructions5.8.13 Pulse Width Modulation (PWM)5-195Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Ranges of Input and Ou
5.8 DDC Instructions5.8.13 Pulse Width Modulation (PWM)5-196( 3 ) Programming ExampleIn the following programming example, the PWM output for the in
5.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLBR)5-197Instructions55.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLB
5.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLBR)5-198( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.[ a ] Paramet
5.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLBR)5-199Instructions5( 3 ) Programming ExampleIn the following programming example, th
5.9 Table Manipulation Instructions5.9.2 Write Table Block (TBLBW)5-2005.9.2 Write Table Block (TBLBW)( 1 ) OperationThe TBLBW instruction moves th
2.3 Ladder Programming Instructions2-7Specifications for Ladder Programs2Table Manipulation InstructionsTBLBR Read Table Block5.9.1TBLBW Write Table
5.9 Table Manipulation Instructions5.9.2 Write Table Block (TBLBW)5-201Instructions5( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used
5.9 Table Manipulation Instructions5.9.2 Write Table Block (TBLBW)5-202( 3 ) Programming ExampleIn the following programming example, an area of dat
5.9 Table Manipulation Instructions5.9.3 Search for Table Row (TBLSRL)5-203Instructions55.9.3 Search for Table Row (TBLSRL)( 1 ) OperationThe TBLSR
5.9 Table Manipulation Instructions5.9.3 Search for Table Row (TBLSRL)5-204( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.[ a ] Pa
5.9 Table Manipulation Instructions5.9.3 Search for Table Row (TBLSRL)5-205Instructions5( 3 ) Programming ExampleIn the following programming exampl
5.9 Table Manipulation Instructions5.9.4 Search for Table Column (TBLSRC)5-2065.9.4 Search for Table Column (TBLSRC)( 1 ) OperationThe TBLSRC instr
5.9 Table Manipulation Instructions5.9.4 Search for Table Column (TBLSRC)5-207Instructions5( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot
5.9 Table Manipulation Instructions5.9.4 Search for Table Column (TBLSRC)5-208( 3 ) Programming ExampleIn the following programming example, a searc
5.9 Table Manipulation Instructions5.9.5 Clear Table Block (TBLCL)5-209Instructions55.9.5 Clear Table Block (TBLCL)( 1 ) OperationThe TBLCL instruc
5.9 Table Manipulation Instructions5.9.5 Clear Table Block (TBLCL)5-210( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.[ a ] Parame
3-1Ladder Program Development Flow33Ladder Program Development FlowThis chapter describes the development flow for ladder programs.3.1 Ladder Program
5.9 Table Manipulation Instructions5.9.5 Clear Table Block (TBLCL)5-211Instructions5( 3 ) Programming ExampleIn the following programming example, t
5.9 Table Manipulation Instructions5.9.6 Move Table Block (TBLMV)5-2125.9.6 Move Table Block (TBLMV)( 1 ) OperationThe TBLMV instruction moves a bl
5.9 Table Manipulation Instructions5.9.6 Move Table Block (TBLMV)5-213Instructions5( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.
5.9 Table Manipulation Instructions5.9.6 Move Table Block (TBLMV)5-214( 3 ) Programming ExampleIn the following programming example, the specified b
5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-215Instructions55.9.7 Read Queue Table (QTBLR and QTBLRI)( 1 ) Operat
5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-216( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.Pa
5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-217Instructions5[ a ] Parameter Table Configuration[ b ] Error Codes[
5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-218The parameter table is set as shown in the following table.Here, sw
5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-219Instructions55.9.8 Write Queue Table (QTBLW and QTBLWI)( 1 ) Oper
5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-220( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.P
3.1 Ladder Program Design Procedures 3-23.1 Ladder Program Design ProceduresThis section describes the design procedures for ladder programs as out
5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-221Instructions5[ a ] Parameter Table Configuration[ b ] Error Codes[
5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-222The parameter table is set as shown in the following table.After c
5.9 Table Manipulation Instructions5.9.9 Clear Queue Table Pointers (QTBLCL)5-223Instructions55.9.9 Clear Queue Table Pointers (QTBLCL)( 1 ) Operat
5.9 Table Manipulation Instructions5.9.9 Clear Queue Table Pointers (QTBLCL)5-224( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.
5.10 System Function Instructions5.10.1 Counter (COUNTER)5-225Instructions55.10 System Function Instructions5.10.1 Counter (COUNTER)( 1 ) Operatio
5.10 System Function Instructions5.10.1 Counter (COUNTER)5-226( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot be used.The param
5.10 System Function Instructions5.10.1 Counter (COUNTER)5-227Instructions5( 3 ) Programming ExampleIn the following programming example, the first
5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-2285.10.2 First-in First-out (FINFOUT)( 1 ) OperationThe FINFOUT instruction
5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-229Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers
5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-230The parameters are described in the following table.( 3 ) Programming Examp
iiiAbout this Manual This manual provides comprehensive information on ladder programming for MP2000-series Machine Controllers. It provides the fo
3.1 Ladder Program Design Procedures3.1.1 Connecting the Hardware3-3Ladder Program Development Flow33.1.1 Connecting the HardwareThe flow of ladder
5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-231Instructions5The data from MW00000 to MW00003 is stored in the FIFO table b
5.10 System Function Instructions5.10.3 Trace (TRACE)5-2325.10.3 Trace (TRACE)( 1 ) OperationThe TRACE instruction performs trace execution control
5.10 System Function Instructions5.10.3 Trace (TRACE)5-233Instructions5The parameters are described in the following table.The status configuration
5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-2345.10.4 Read Data Trace (DTRC-RD)( 1 ) OperationThe DTRC-RD instruction reads
5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-235Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers can
5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-236The status configuration is shown below.( 3 ) Programming ExampleIn the follow
5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-237Instructions5( 4 ) Additional Information[ a ] Structure of Read DataThe read
5.10 System Function Instructions5.10.5 Read Inverter Trace (ITRC-RD)5-2385.10.5 Read Inverter Trace (ITRC-RD)( 1 ) OperationThe ITRC-RD instructio
5.10 System Function Instructions5.10.5 Read Inverter Trace (ITRC-RD)5-239Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers
5.10 System Function Instructions5.10.5 Read Inverter Trace (ITRC-RD)5-240The parameters are described in the following table.The status configurati
3.1 Ladder Program Design Procedures3.1.2 Installing MPE720 Version 63-43.1.2 Installing MPE720 Version 6Install MPE720 version 6 on a PC.Refer to
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-241Instructions55.10.6 Send Message (MSG-SND)( 1 ) OperationThe MSG-SND instruction
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-242( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot be used.The
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-243Instructions5[ a ] Parameter DetailsThis section describes the parameters in deta
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-244 Status (PARAM01)The status of the communications section is output to this par
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-245Instructions53. PARAMETER If the RESULT is 4 (FMT_NG), one of the following error
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-246 Data AddressesThe range of addresses that can be set for each function code are
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-247Instructions5 Remote CPU Number (PARAM07)Specify the remote CPU number. If the r
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-248[ c ] Inputs Execute (Send Execution Command)The message is sent when this comma
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-249Instructions5( 3 ) Programming ExampleIn the following programming example, sendi
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-250
3.1 Ladder Program Design Procedures3.1.5 Creating a Project3-5Ladder Program Development Flow33.1.5 Creating a ProjectUse the following procedure
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-251Instructions5
5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-252Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller MP2
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-253Instructions55.10.7 Receive Message (MSG-RCV)( 1 ) OperationA message is rece
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-254( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot be used.T
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-255Instructions5[ a ] Parameter DetailsThis section describes the parameters in d
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-256 Remote Station Number (PARAM02)The station number of the source is output to
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-257Instructions5 Coil Offset (PARAM08)Set the offset to the word address of the
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-258[ b ] Inputs Execute (Receive Execution Command)The message is received when
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-259Instructions5( 3 ) Programming ExampleIn the following programming example, me
5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-260Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller
3.1 Ladder Program Design Procedures3.1.6 Creating Ladder Programs3-63.1.6 Creating Ladder ProgramsStart the Ladder Editor and use the following pr
5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-261Instructions55.10.8 Write Inverter Parameter (ICNS-WR)( 1 ) Operatio
5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-262( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot
5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-263Instructions5The parameters are described in the following table.The
5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-264( 3 ) Programming ExampleIn the following programming example, the da
5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-265Instructions5( 4 ) Additional Information[ a ] Writing Parameters to
5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-2665.10.9 Read Inverter Parameter (ICNS-RD)( 1 ) OperationThe ICNS-RD in
5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-267Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # regis
5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-268The parameters are described in the following table.The status configu
5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-269Instructions5( 3 ) Programming ExampleIn the following programming exa
5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-2705.10.10 Write SERVOPACK Parameter (MLNK-SVW)( 1 ) OperationThe ML
3.1 Ladder Program Design Procedures3.1.6 Creating Ladder Programs3-7Ladder Program Development Flow33. Create the ladder program in the Ladder Edit
5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-271Instructions5The parameters are described in the following table.T
5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-272 Processing Result (PARAM00)• 0000 hex: Processing (Busy)• 1000
5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-273Instructions5 For System Use #2 (PARAM05)This parameter is used b
5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-274
5.10 System Function Instructions5.10.11 Write Motion Register (MOTREG-W)5-275Instructions55.10.11 Write Motion Register (MOTREG-W)( 1 ) OperationT
5.10 System Function Instructions5.10.11 Write Motion Register (MOTREG-W)5-276( 2 ) Format∗ C and # registers cannot be used. These parameters may b
5.10 System Function Instructions5.10.11 Write Motion Register (MOTREG-W)5-277Instructions5( 3 ) Programming ExampleIn the following programming exa
5.10 System Function Instructions5.10.12 Read Motion Register (MOTREG-R)5-2785.10.12 Read Motion Register (MOTREG-R)( 1 ) OperationThe MOTREG-R ins
5.10 System Function Instructions5.10.12 Read Motion Register (MOTREG-R)5-279Instructions5( 2 ) Format∗ C and # registers cannot be used. These para
5.10 System Function Instructions5.10.12 Read Motion Register (MOTREG-R)5-280( 3 ) Programming ExampleIn the following programming example, the Mach
3.1 Ladder Program Design Procedures3.1.6 Creating Ladder Programs3-8f Repeat steps 1 to 3 until you have created the entire ladder program. The fol
5.11 C-language Control Instructions5.11.1 Call C-language Function (C-FUNC)5-281Instructions55.11 C-language Control Instructions5.11.1 Call C-la
5.11 C-language Control Instructions5.11.1 Call C-language Function (C-FUNC)5-282The parameters are described in the following table.∗ This error is
5.11 C-language Control Instructions5.11.2 C-language Task Control (TSK-CTRL)5-283Instructions55.11.2 C-language Task Control (TSK-CTRL)( 1 ) Opera
5.11 C-language Control Instructions5.11.2 C-language Task Control (TSK-CTRL)5-284The parameters are described in the following table.∗ 1. Execute
5.11 C-language Control Instructions5.11.2 C-language Task Control (TSK-CTRL)5-285Instructions5( 3 ) Programming ExampleIn the following programming
6-1Features of the MPE720 Engineering Tool66Features of the MPE720 Engineering ToolThis chapter describes the key features of the MPE720 Engineering T
6.1 Ladder Program Runtime Monitoring 6-2This chapter describes the following ladder programming and debugging features of MPE720 version 6.• Ladde
6.2 Searching/Replacing6-3Features of the MPE720 Engineering Tool66.2 Searching/ReplacingTwo different search/replace operations are provided.• Sea
6.3 Cross References 6-46.3 Cross ReferencesCross referencing allows you to check whether a register is used in a program, and where it is used.The
6.4 Checking for Multiple Coils6-5Features of the MPE720 Engineering Tool66.4 Checking for Multiple CoilsYou can check for multiple coils (different
3.1 Ladder Program Design Procedures3.1.7 Transferring Ladder Programs3-9Ladder Program Development Flow33.1.7 Transferring Ladder ProgramsUse the
6.6 Viewing Called Programs 6-66.6 Viewing Called ProgramsYou can open a drawing that is called with an SEE instruction or an FUNC instruction.6.7
6.8 Tuning Panel6-7Features of the MPE720 Engineering Tool66.8 Tuning PanelThe Tuning Panel allows you to display and edit the current values of pre
6.9 Enabling and Disabling Ladder Programs 6-86.9 Enabling and Disabling Ladder ProgramsYou can enable and disable individual drawings in ladder pr
6.10 Compiling for MPE720 Version 56-9Features of the MPE720 Engineering Tool66.10 Compiling for MPE720 Version 5Compiling for MPE720 version 5 allo
7-1Troubleshooting77TroubleshootingThis chapter describes troubleshooting.7.1 Basic Flow of Troubleshooting - - - - - - - - - - - - - - - - - - - - -
7.1 Basic Flow of Troubleshooting 7-27.1 Basic Flow of TroubleshootingWhen a problem occurs, it is important to quickly find the cause of the probl
7.2 Indicator Status7-3Troubleshooting77.2 Indicator StatusThe pattern of the indicators on the MP2000-series Machine Controller shows the operatin
7.3 Problem Classifications7.3.1 Overview7-47.3 Problem Classifications7.3.1 OverviewThe following table gives the problems that can occur on an M
7.3 Problem Classifications7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers7-5Troubleshooting77.3.2 Error Checking Flowchart fo
7.4 Detailed Troubleshooting7.4.1 Operation Errors7-67.4 Detailed Troubleshooting7.4.1 Operation ErrorsOperation errors can be caused by the follo
3.1 Ladder Program Design Procedures3.1.7 Transferring Ladder Programs3-104. Click the Individual Button, then select the Program Check Box. Click t
7.4 Detailed Troubleshooting7.4.1 Operation Errors7-7Troubleshooting7 Troubleshooting Method 1You can use the following procedure to troubleshoot o
7.4 Detailed Troubleshooting7.4.1 Operation Errors7-8 Troubleshooting Method 2You can use the following procedure to troubleshoot operation errors
7.4 Detailed Troubleshooting7.4.2 I/O Errors7-9Troubleshooting77.4.2 I/O ErrorsAn I/O error can occur in the following cases.• Option Module alloc
7.4 Detailed Troubleshooting7.4.3 Watchdog Timer Errors7-107.4.3 Watchdog Timer ErrorsWatchdog timer errors can be caused by the following problems
7.4 Detailed Troubleshooting7.4.5 System Errors7-11Troubleshooting77.4.5 System ErrorsSystem errors can be caused by the following problems.• Ille
A-1System RegistersAppAAppendix ASystem RegistersThis appendix describes the registers that are provided by the system of the Machine Controller.A.1 S
A.1 System Service Registers A-2System registers are provided by the MP2000-series Machine Controller system. They can be used to read system error
A.1 System Service RegistersA-3System RegistersAppA( 2 ) Exclusive to DWG.H OnlyOperation starts when the high-speed scan starts.NameRegister Address
A.1 System Service Registers A-4( 3 ) Exclusive to DWG.L OnlyOperation starts when the low-speed scan starts.NameRegister AddressRemarks1-scan Flick
A.1 System Service RegistersA-5System RegistersAppA( 4 ) Scan Execution Status and Calendar( 5 ) System Program Software Numbers and Remaining Progra
3.1 Ladder Program Design Procedures3.1.8 Checking the Operation of the Ladder Programs3-11Ladder Program Development Flow33.1.8 Checking the Opera
A.2 System Status A-6A.2 System StatusThe system operating status and errors are stored in registers SW00040 to SW00048. You can check the system st
A.3 System Error StatusA-7System RegistersAppAA.3 System Error StatusDetails on the system errors are stored in registers SW00050 to SW00079.Name Reg
A.3 System Error Status A-8∗ 1. This error is reported for CPU Modules with a system software version of 2.75 or higher. For version 2.74 or lower,
A.4 Overview of User Operation Error StatusA-9System RegistersAppAA.4 Overview of User Operation Error StatusDetails are given in registers SW00080 t
A.4 Overview of User Operation Error Status A-10( 2 ) User Operation Error Code -2Error Code Error Description System DefaultInteger and Real Number
A.5 System Service Execution StatusA-11System RegistersAppAA.5 System Service Execution StatusThe execution status of system services is stored in re
A.7 System I/O Error Status A-12A.7 System I/O Error StatusDetails on the system I/O errors are stored in registers SW00200 to SW00503.NameRegister
A.8 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)A-13System RegistersAppAA.8 CF Card-related System Registers (MP2200-serie
A.9 Interrupt StatusA.9.1 Interrupt Status ListA-14A.9 Interrupt StatusA.9.1 Interrupt Status ListA.9.2 Details on Interrupting Module( 1 ) Rackmm =
A.10 Module InformationA-15System RegistersAppAA.10 Module InformationThe Module information is reported as shown in this section. The contents of t
3.1 Ladder Program Design Procedures3.1.8 Checking the Operation of the Ladder Programs3-12( 2 ) Confirming the Operation of the 0000th Line (AND C
A.11 MPU-01 System StatusA-16A.11 MPU-01 System StatusNameRegister AddressRemarksMPU-01 #1 Status SW01411Status of MPU-01 Module circuit number 1MPU-
A.12 Motion Program InformationA-17System RegistersAppAA.12 Motion Program Information( 1 ) System Work Numbers 1 to 8System Work NumberSystem Work 1
A.12 Motion Program InformationA-18( 2 ) System Work Numbers 9 to 16System Work NumberSystem Work 9System Work 10System Work 11System Work 12System W
B-1CP (Previous) Ladder Instructions and New Ladder InstructionsAppBAppendix BCP (Previous) Ladder Instructions andNew Ladder InstructionsThis appendi
B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder Instructions B-2B.1 Correspondence between CP (Previous) Ladder Instruct
B.2 Converting CP (Previous) Ladder Programs to New Ladder ProgramsB-3CP (Previous) Ladder Instructions and New Ladder InstructionsAppBB.2 Converting
B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs B-42. Click Select.The Conversion of CP ladder Dialog Box will appear.The check
C-1Sample ProgrammingAppCAppendix CSample ProgrammingThis appendix describes ladder programming examples that perform test runs.C.1 Jogging from the
C.1 Jogging from the Control Panel C-2C.1 Jogging from the Control PanelThe following configuration and ladder programming example illustrate how to
C.2 Motion Program ControlC-3Sample ProgrammingAppCC.2 Motion Program ControlThe following ladder programming example demonstrates how to control exe
iv Related ManualsThe following manuals are related to the MP2000 Series. Refer to these manuals as required.Manual Name Manual Number Descriptio
3.1 Ladder Program Design Procedures3.1.8 Checking the Operation of the Ladder Programs3-13Ladder Program Development Flow3( 3 ) Confirming the Oper
C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis C-4C.3 Simple Synchronized Operation of Two Axes with a Virtual AxisWith the follo
C.3 Simple Synchronized Operation of Two Axes with a Virtual AxisC-5Sample ProgrammingAppC Ladder Programming Example
C.4 Transferring Project Files to Different Models C-6C.4 Transferring Project Files to Different ModelsUse the following procedure to transfer a pr
D-1Format for EXPRESSION Instruction AppDAppendix DFormat for EXPRESSION InstructionThis appendix describes the format for the EXPRESSION instruction.
D.1 Elements That You Can Use in Numeric Expressions D-2D.1 Elements That You Can Use in Numeric ExpressionsNumeric expressions can include operator
D.1 Elements That You Can Use in Numeric ExpressionsD-3Format for EXPRESSION Instruction AppD( 2 ) Operands[ a ] ConstantsIntegers or real numbers ma
D.1 Elements That You Can Use in Numeric Expressions D-4( 3 ) Instructions That You Can Use with EXPRESSION InstructionsInstruction Description Exam
D.2 National LimitationsD.2.1 Arithmetic OperatorsD-5Format for EXPRESSION Instruction AppDD.2 National LimitationsSeveral limitations apply when co
D.2 National LimitationsD.2.4 Substitution OperatorD-6D.2.4 Substitution OperatorReal number and integer registers can be substituted with either re
E-1PrecautionsAppEAppendix EPrecautionsThis appendix provides precautions on ladder programs and motion parameters.E.1 General Precautions - - - -
3.1 Ladder Program Design Procedures3.1.9 Saving the Ladder Programs to Flash Memory3-143.1.9 Saving the Ladder Programs to Flash MemoryUse the fol
E.1 General Precautions E-2E.1 General Precautions( 1 ) Do Not Forget to Save The Data to Flash Memory When You Change or Transfer a Pro-gramDo not
E.2 Precautions on Motion ParametersE-3PrecautionsAppE( 2 ) Do Not Use a Subscript to Reference a Motion Register in a Different CircuitMotion regist
IndexIndex-1IndexSymbols # registers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-15 Numerics 10-ms OFF-Delay Timer (T
IndexIndex-2Integer Remainder (MOD) - - - - - - - - - - - - - - - - - - - - - - - - - - 5-36 Inverse Function Generator (IFGN) - - - - - - - - - - -
Revision HistoryThe revision dates and numbers of the revised manuals are given on the bottom of the back cover.Date of PublicationRev. No.WEB Rev. No
IRUMA BUSINESS CENTER (SOLUTION CENTER)480, Kamifujisawa, Iruma, Saitama 358-8555, JapanPhone 81-4-2962-5151 Fax 81-4-2962-6138http://www.yaskawa.
4-1Programming44ProgrammingThis chapter describes ladder programming methods and the elements that are necessary for ladder programming.4.1 Ladder Pro
4.1 Ladder Program Editor 4-24.1 Ladder Program EditorOn the MPE720 version 6 Engineering Tool, the following panes are displayed to edit a ladder
4.2 Ladder Drawings4.2.1 Types of Ladder Drawings4-3Programming44.2 Ladder DrawingsLadder programs are managed as drawings (ladder drawings) that a
4.2 Ladder Drawings4.2.1 Types of Ladder Drawings4-4( 2 ) Hierarchical Configuration of DrawingsEach process program is organized in a parent-child-
4.2 Ladder Drawings4.2.2 Controlling the Execution of Drawings4-5Programming44.2.2 Controlling the Execution of Drawings( 1 ) Controlling the Execu
4.2 Ladder Drawings4.2.2 Controlling the Execution of Drawings4-6( 3 ) Execution Processing of DrawingsThe execution processing for drawings is exec
4.3 User Functions4.3.1 What Is a User Function?4-7Programming44.3 User Functions4.3.1 What Is a User Function?( 1 ) Overview of User FunctionsA u
4.3 User Functions4.3.1 What Is a User Function?4-8( 2 ) Relationship between I/O Data for a Function and Registers in the FunctionThe X, Y, Z, and
vMachine Controller MP900/MP2000 Series Distributed I/O Module User’s Manual, MECHATROLINK SystemSIE-C887-5.1Describes MECHATROLINK distributed I/O
4.3 User Functions4.3.2 Creating User Functions4-9Programming44.3.2 Creating User FunctionsThis section describes how to create a user function tha
4.3 User Functions4.3.2 Creating User Functions4-103. Select Function input definition under I/O definition and enter the following information. 4.
4.3 User Functions4.3.2 Creating User Functions4-11Programming46. Create the following ladder program in the drawing of the FUNC01 user function tha
4.3 User Functions4.3.3 Calling a User Function4-124.3.3 Calling a User FunctionYou can call a user function by using a FUNC instruction in the lad
4.4 Registers (Variables)4.4.1 What Are Registers?4-13Programming44.4 Registers (Variables)4.4.1 What Are Registers?Registers are areas that store
4.4 Registers (Variables)4.4.2 Register Types4-144.4.2 Register Types( 1 ) Global RegistersGlobal registers are variables that are shared by ladder
4.4 Registers (Variables)4.4.2 Register Types4-15Programming4( 2 ) Local RegistersLocal registers are valid within only one specific program. The lo
4.4 Registers (Variables)4.4.2 Register Types4-16( 3 ) Precautions When Using Local Registers within a User FunctionWhen you call a user function, c
4.4 Registers (Variables)4.4.3 Data Types4-17Programming44.4.3 Data Types( 1 ) List of Data TypesThere are various data types that you can use depe
4.4 Registers (Variables)4.4.3 Data Types4-18( 2 ) Precautions for Operations Using Different Data TypesIf you perform an operation using different
vi Visual AidsThe following visual aids are used to indicate certain types of information for easier reference. Use these to help you understand
4.4 Registers (Variables)4.4.4 Index Registers (i, j)4-19Programming44.4.4 Index Registers (i, j)There are two index registers, i and j, that are u
4.4 Registers (Variables)4.4.4 Index Registers (i, j)4-20A programming example that uses indexed registers is shown below.This example uses index j
4.5 Table Data4.5.1 What Is Table Data?4-21Programming44.5 Table Data4.5.1 What Is Table Data?Table data is data that is managed in tabular form.
4.5 Table Data4.5.2 Creating Table Data4-22 Procedure to Create Table Data1. Select File - Open − Define Data Table − Data Table Map in the Module
4.6 Transferring Data4-23Programming44.6 Transferring DataYou can perform one of the four operations that are shown in the following figure to trans
4.7 Setting the High-speed/Low-speed Scan Times4-244.7 Setting the High-speed/Low-speed Scan Times( 1 ) What Are the Scan Times?With an MP2000-serie
4.8 Advanced Programming4.8.1 Motion Programs4-25Programming44.8 Advanced Programming4.8.1 Motion ProgramsA motion program is written in a text-ba
4.8 Advanced Programming4.8.2 C-language Programs4-264.8.2 C-language ProgramsYou can use the MP2000-series Machine Controller Embedded C-language
4.8 Advanced Programming4.8.3 Security4-27Programming44.8.3 SecurityMPE720 version 6 has the following security features. You can use these securit
4.8 Advanced Programming4.8.4 Tracing4-284.8.4 TracingMPE720 version 6 has three trace modes. Realtime TracingYou can monitor specified registers
viiSafety PrecautionsThis section provides important precautions that must be observed in ladder programming. Before you start to program, carefully
5-1Instructions55InstructionsThis chapter describes the ladder programming instructions in detail.5.1 How to Read the Instructions - - - - - - - - -
5-25.4 Logic Operations and Comparison Instructions - - - - - - - - - - - - - - - - - - - 5-635.4.1 Inclusive AND (AND) - - - - - - - - - - - -
5-3Instructions55.8.7 First-order Lag (LAG) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-1615.8.8 Phas
5.1 How to Read the Instructions 5-45.1 How to Read the InstructionsThis chapter describes each instruction using the following format.( 1 ) Operat
5.2 Relay Circuit Instructions5.2.1 NO Contact (NOC)5-5Instructions55.2 Relay Circuit Instructions5.2.1 NO Contact (NOC)( 1 ) OperationThe NOC ins
5.2 Relay Circuit Instructions5.2.2 NC Contact (NCC)5-65.2.2 NC Contact (NCC)( 1 ) OperationThe NCC instruction outputs OFF whenever the bit with t
5.2 Relay Circuit Instructions5.2.3 10-ms ON-Delay Timer (TON[10ms])5-7Instructions55.2.3 10-ms ON-Delay Timer (TON[10ms])( 1 ) OperationThe timer
5.2 Relay Circuit Instructions5.2.3 10-ms ON-Delay Timer (TON[10ms])5-8( 3 ) Programming ExampleIn the following programming example, the set value
5.2 Relay Circuit Instructions5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])5-9Instructions55.2.4 10-ms OFF-Delay Timer (TOFF[10ms])( 1 ) OperationThe ti
5.2 Relay Circuit Instructions5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])5-10( 3 ) Programming ExampleIn the following programming example, the set val
viiiWarranty( 1 ) Details of Warranty Warranty PeriodThe warranty period for a product that was purchased (hereinafter called “delivered product”
5.2 Relay Circuit Instructions5.2.5 1-s ON-Delay Timer (TON[1s])5-11Instructions55.2.5 1-s ON-Delay Timer (TON[1s])( 1 ) OperationThe timer counts
5.2 Relay Circuit Instructions5.2.5 1-s ON-Delay Timer (TON[1s])5-12( 3 ) Programming ExampleIn the following programming example, the set value of
5.2 Relay Circuit Instructions5.2.6 1-s OFF-Delay Timer (TOFF[1s])5-13Instructions55.2.6 1-s OFF-Delay Timer (TOFF[1s])( 1 ) OperationThe timer cou
5.2 Relay Circuit Instructions5.2.6 1-s OFF-Delay Timer (TOFF[1s])5-14( 3 ) Programming ExampleIn the following programming example, the set value o
5.2 Relay Circuit Instructions5.2.7 Rising-edge Pulses (ON-PLS)5-15Instructions55.2.7 Rising-edge Pulses (ON-PLS)( 1 ) OperationThe ON-PLS instruct
5.2 Relay Circuit Instructions5.2.7 Rising-edge Pulses (ON-PLS)5-16( 3 ) Programming ExampleThe DB000002 output coil turns ON for only one scan if t
5.2 Relay Circuit Instructions5.2.8 Falling-edge Pulses (OFF-PLS)5-17Instructions55.2.8 Falling-edge Pulses (OFF-PLS)( 1 ) OperationThe OFF-PLS ins
5.2 Relay Circuit Instructions5.2.8 Falling-edge Pulses (OFF-PLS)5-18( 3 ) Programming ExampleThe DB000002 output coil turns ON for only one scan if
5.2 Relay Circuit Instructions5.2.9 Coil (COIL)5-19Instructions55.2.9 Coil (COIL)( 1 ) OperationThe COIL instruction sets the value of the bit at t
5.2 Relay Circuit Instructions5.2.10 Set Coil (S-COIL)5-205.2.10 Set Coil (S-COIL)( 1 ) OperationThe S-COIL instruction sets the value of the bit a
ix( 3 ) Suitability for Use1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the
5.2 Relay Circuit Instructions5.2.11 Reset Coil (R-COIL)5-21Instructions55.2.11 Reset Coil (R-COIL)( 1 ) OperationThe R-COIL instruction sets the b
5.3 Numeric Operation Instructions5.3.1 Store (STORE)5-225.3 Numeric Operation Instructions5.3.1 Store (STORE)( 1 ) OperationThe input data is sto
5.3 Numeric Operation Instructions5.3.1 Store (STORE)5-23Instructions5( 3 ) Programming ExamplesIn the following programming examples, the input dat
5.3 Numeric Operation Instructions5.3.2 Add (ADD (+))5-245.3.2 Add (ADD (+))( 1 ) OperationInput data A and input data B are added and the result i
5.3 Numeric Operation Instructions5.3.2 Add (ADD (+))5-25Instructions5( 3 ) Programming ExamplesIn the following programming examples, input data A
5.3 Numeric Operation Instructions5.3.3 Extended Add (ADDX (++))5-265.3.3 Extended Add (ADDX (++))( 1 ) OperationInput data A and input data B are
5.3 Numeric Operation Instructions5.3.3 Extended Add (ADDX (++))5-27Instructions5( 3 ) Programming ExamplesIn the following programming examples, in
5.3 Numeric Operation Instructions5.3.4 Subtract (SUB (−))5-285.3.4 Subtract (SUB (−))( 1 ) OperationInput data B is subtracted from input data A a
5.3 Numeric Operation Instructions5.3.4 Subtract (SUB (−))5-29Instructions5• Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input
5.3 Numeric Operation Instructions5.3.5 Extended Subtract (SUBX (− −))5-305.3.5 Extended Subtract (SUBX (− −))( 1 ) OperationInput data B is subtra
Komentáře k této Příručce